
Message integrity

Message Auth. Codes



Message Integrity
Goal:      integrity,    no confidentiality.

Examples:

– Protecting public binaries on disk.   

– Protecting banner ads on web pages.



Message integrity:   MACs

Def:    MAC I = (S,V)  defined over  (K,M,T) is a pair of algs:

– S(k,m) outputs t in T

– V(k,m,t) outputs `yes’ or `no’

Alice Bob

k k
message  m tag

Generate tag:
tag  S(k, m)

Verify tag:
V(k, m, tag)  = `yes’

?

∀𝑘 ∈ 𝒦, ∀𝑚 ∈ ℳ

𝑉 𝑘,𝑚, 𝑆 𝑘,𝑚 = "𝑦𝑒𝑠"



Integrity requires a secret key

• Attacker can easily modify message m and re-compute CRC.

• CRC designed to detect random, not malicious errors.

Alice Bob

message  m tag

Generate tag:
tag  CRC(m)

Verify tag:
V(m, tag)  = `yes’

?

m’||CRC(m’)



Secure MACs

Attacker’s power:    chosen message attack

• for m1,m2,…,mq attacker is given   ti  S(k,mi)

Attacker’s goal:   existential forgery

• produce some new valid message/tag pair  (m,t).

(m,t)   { (m1,t1) , … , (mq,tq) }

⇒ attacker cannot produce a valid tag for a new message

⇒ given  (m,t)   attacker cannot even produce (m,t’)  for   t’ ≠ t 



Secure MACs
• For a MAC   I=(S,V)  and adv.  A  define a MAC game as:

Def:  I=(S,V)  is a secure MAC if for all “efficient” A:

AdvMAC[A,I] =  Pr[Chal. outputs 1] is “negligible.”

Chal. Adv.

kK

(m,t)

m1 M

t1  S(k,m1)

b=1    if  V(k,m,t) = `yes’ and  (m,t)   { (m1,t1) , … , (mq,tq) }

b=0   otherwise

b

m2 , …, mq

t2 , …, tq



Let  I = (S,V) be a MAC.

Suppose an attacker is able to find  m0 ≠ m1 such that

S(k, m0) = S(k, m1)     for  ½ of the keys k in K

Can this MAC be secure?

Yes, the attacker cannot generate a valid tag for m0 or m1

No, this MAC can be broken using a chosen msg attack

It depends on the details of the MAC

𝑨𝒅𝒗 𝑨, 𝑰 = 𝟏/𝟐

(m0, t)  →output (m1, t) valid existing Forgery 



Let  I = (S,V) be a MAC.

Suppose S(k,m) is always 5 bits long

Can this MAC be secure?

Yes, the attacker cannot generate a valid tag for any message

It depends on the details of the MAC

No, an attacker can simply guess the tag for messages

𝑨𝒅𝒗 𝑨, 𝑰 = 𝟏/𝟑𝟐

T= {0,1}5

Output:  chose rand.   T  {0,1}5

output (0,t)

tag len = 64, 96, 128 bits

TLS



Example:  protecting system files

Later a virus infects system and modifies system files

User reboots into clean OS and supplies his password

– Then:   secure MAC   ⇒ all modified files will be detected

Suppose at install time the system computes:

F1

t1 = S(k,F1)

F2

t2 = S(k,F2)

Fn

tn = S(k,Fn)

⋯ k derived from
user’s password

filename filename filename



Message Integrity

MACs based on PRFs



Review:   Secure MACs
MAC:   signing alg.   S(k,m)⟶t and verification alg.   V(k,m,t) ⟶0,1

Attacker’s power:    chosen message attack

• for m1,m2,…,mq attacker is given   ti  S(k,mi)

Attacker’s goal:   existential forgery

• produce some new valid message/tag pair  (m,t).

(m,t)   { (m1,t1) , … , (mq,tq) }

⇒ attacker cannot produce a valid tag for a new message



Secure PRF   ⇒ Secure MAC
For a PRF   F: K × X  ⟶ Y   define a MAC    IF = (S,V)    as:

– S(k,m)  :=  F(k,m)

– V(k,m,t):   output `yes’ if  t = F(k,m) and `no’ otherwise.

Alice Bob

message  m tag

tag  F(k,m) accept msg if

tag = F(k,m)



A bad example

Suppose   F: K × X  ⟶ Y   is a secure PRF with Y = {0,1}10

Is the derived MAC   IF a secure MAC system?

Yes, the MAC is secure because the PRF is secure 

No tags are too short:  anyone can guess the tag for any msg

It depends on the function   F

Adv[A, IF] = 1/210 = 1/1024  → non-negligible  



Security

Thm: If  F: K×X⟶Y  is a secure PRF  and  1/|Y| is negligible   

(i.e.  |Y| is large)   then  IF is a secure MAC.

In particular,  for every eff. MAC adversary A attacking IF

there exists an eff. PRF adversary B attacking F  s.t.:

AdvMAC[A, IF]   AdvPRF[B, F]   +  1/|Y|

 IF is secure as long as  |Y|  is large,   say  |Y| = 280 .



Proof Sketch
Suppose   f: X  ⟶ Y    is a truly random function

Then MAC adversary A must win the following game:

A wins if    t = f(m)    and      m   { m1 , … , mq }

⇒ Pr[A wins] = 1/|Y| 

Chal. Adv.

f  in 

Funs[X,Y] (m,t)

m1  X

t1  f(m1)

m2 , …,   mq

f(m2) , …, f(mq)

same must hold for the secure PRF: F(k,x)

The best the adversary can do is only guessing

⇒ f(m) is independent of f(m1), …, f(mq)



Examples

• AES (is a secure PRF): A MAC for 16-byte/128-bit messages.

• Main question: How to convert Small-MAC into a Big-MAC  ?

• Two main constructions used in practice:

– CBC-MAC (banking – ANSI X9.9, X9.19,   FIPS 186-3)

– HMAC (Internet protocols:  SSL, IPsec, SSH, …)

• Both convert a small-PRF into a big-PRF.



Truncating MACs based on PRFs

Easy lemma:    suppose   F: K × X  ⟶ {0,1}n is a secure PRF.

Then so is    Ft(k,m) = F(k,m)[1…t]      for all    1 ≤ t ≤ n

⇒ if  (S,V)  is a MAC is based on a secure PRF outputting n-bit tags

the truncated MAC outputting   w   bits is secure

… as long as  1/2w is still negligible   (say  w64)

𝑓𝑖𝑟𝑠𝑡 𝑡−𝑏𝑖𝑡
𝑜𝑓 𝑜𝑢𝑡𝑝𝑢𝑡



Message Integrity

CBC-MAC and NMAC



MACs and PRFs

Recall:  secure PRF  F   ⇒ secure MAC,      as long as |Y| is large

S(k, m) =  F(k, m)

Our goal:   

given a PRF for short messages  (AES)

construct a PRF for long messages

From here on let   X = {0,1}n (e.g.  n=128, in case of AES)



raw CBC

Construction 1:   encrypted CBC-MAC (ECBC)

F(k,) F(k,) F(k,)

m[0] m[1] m[3] m[4]



F(k,)



F(k1,) tagLet   F: K × X ⟶ X   be a PRP 

Define new PRF   FECBC : K2 × X≤L ⟶ X 



cascade

Construction 2:   NMAC   (nested MAC)

F F F

m[0] m[1] m[3] m[4]

F

F

tag

Let   F: K × X ⟶ K   be a PRF 

Define new PRF   FNMAC : K
2 × X≤L ⟶ K

> > > >k
t ll fpad

>
k1

t
∈ 𝐾

∈ 𝑋

∈ 𝐾



Why the last encryption step in ECBC-MAC and NMAC?

NMAC:    suppose we define a MAC    I =  (S,V)     where

S(k,m) = cascade(k, m)

This MAC is secure 

This MAC can be forged without any chosen msg queries

This MAC can be forged with one chosen msg query

This MAC can be forged, but only with two msg queries
cascade (k, m) ==> cascade(k, m||w) for any w Extension attack



Why the last encryption step in ECBC-MAC?

Suppose we define a MAC    IRAW =  (S,V)     where

S(k,m) = rawCBC(k,m)

Then   IRAW is easily broken using a 1-chosen msg attack.

Adversary works as follows:

– Choose an arbitrary one-block message   mX

– Request tag for m.    Get   t = F(k,m)

– Output  t  as MAC forgery for the 2-block message  m’=(m,  tm)

Indeed:    rawCBC(k, (m,  tm) ) = F(k, F(k,m)(tm) ) = F(k, t(tm) ) = t



The security bounds are tight:  an attack

After signing |X|1/2  messages with ECBC-MAC  or  

|K|1/2 messages with NMAC

the MACs become insecure

Suppose the underlying PRF  F  is a PRP   (e.g. AES)

• Then both PRFs (ECBC and NMAC) have the following 
extension property:

∀x,y,w:   FBIG(k, x) = FBIG(k, y)     ⇒ FBIG(k,  xllw) = FBIG(k, yllw)



The security bounds are tight:  an attack
Let  FBIG: K × X ⟶ Y   be a PRF that has the extension property

FBIG(k, x) = FBIG(k, y)     ⇒ FBIG(k,  xllw) = FBIG(k, yllw)

Generic attack on the derived MAC:

step 1:   issue  |Y|1/2 message queries for rand. messages in X.

obtain   ( mi, ti )      for  i = 1 ,…, |Y|1/2  

step 2:   find a collision   tu = tv for u≠v (one exists w.h.p by b-day paradox)

step 3:   choose some w and query for   t := FBIG(k, mullw)

step 4:   output forgery  (mvllw,  t).     Indeed    t := FBIG(k, mvllw)



Comparison

ECBC-MAC is commonly used as an AES-based MAC

• CCM encryption mode  (used in 802.11i)

• NIST standard called CMAC

NMAC not usually used with AES or 3DES

• Main reason:    need to change AES key on every block

requires re-computing AES key expansion

• But NMAC is the basis for a popular MAC called HMAC (next)



Message Integrity

MAC padding



Recall:   ECBC-MAC

F(k,) F(k,) F(k,)

m[0] m[1] m[3] m[4]



F(k,)



F(k1,) tagLet   F: K × X ⟶ X   be a PRP 

Define new PRF   FECBC : K2 × X≤L ⟶ X 



What if msg. len. is not multiple of block-size? 

F(k,) F(k,) F(k,)

m[0] m[1] m[3] ???



F(k,)



F(k1,) tag

m[4]



CBC MAC padding

Yes, the MAC is secure

No, given tag on msg m attacker obtains tag on mll0 

It depends on the underlying MAC

m[0] m[1] m[0] 0000m[1]

Bad idea:   pad  m  with  0’s

Is the resulting MAC secure?

Problem:    pad(m) = pad(mll0)



CBC MAC padding

For security, padding must be invertible !    

m0 ≠ m1 ⇒ pad(m0) ≠ pad(m1)

ISO:   pad with   “100000”.    Add new dummy block if needed.

– The “1” indicates beginning of pad.

m[0] m[1] m[0] 100m[1]

m’[0] m’[1] m’[0] m’[1] 1000…000



CMAC   (NIST standard)

Variant of CBC-MAC where      key = (k, k1, k2)

• No final encryption step   (extension attack thwarted by last keyed xor)

• No dummy block   (ambiguity resolved by use of k1 or k2)

F(k,) F(k,)

m[0]



m[1] m[w]

F(k,)



⋯

tag

100

k1

F(k,) F(k,)

m[0]



m[1] m[w]

F(k,)



⋯

tag

k2

(K1, k2) derived 

from K



Message Integrity

PMAC and
Carter-Wegman MAC



• ECBC and NMAC are sequential.

• Can we build a parallel MAC from a small PRF ??



Construction 3:  PMAC – parallel MAC

P(k, i):    an easy to compute function

m[0] m[1] m[2] m[3]

  

F(k1,) F(k1,) F(k1,)

F(k1,) tag



P(k,0) P(k,1) P(k,2) P(k,3)

Let   F: K × X ⟶ X   be a PRF 

Define new PRF   FPMAC : K2 × X≤L ⟶ X 

Padding similar 
to CMAC

key = (k, k1)



PMAC is incremental

Suppose F is a PRP.

When   m[1]  ⟶ m’[1]    
can we quickly update tag?

m[0] m[1] m[3] m[4]

  

F(k1,) F(k1,) F(k1,)

F(k1,) tag



P(k,0) P(k,1) P(k,2) P(k,3)

no, it can’t be done

do   F-1(k1,tag) ⨁ F(k1, m[1] ⨁ P(k,1)) ⨁ F(k1, m’[1] ⨁ P(k,1)) 
do   F-1(k1,tag) ⨁ F(k1, m’[1] ⨁ P(k,1)) 

do   tag ⨁ F(k1, m[1] ⨁ P(k,1)) ⨁ F(k1, m’[1] ⨁ P(k,1)) 

Then apply  F(k1, ⋅)



One time MAC  (analog of one time pad)

• For a MAC   I=(S,V)  and adv.  A  define a MAC game as:

Def:  I=(S,V)  is a secure MAC if for all “efficient” A:

Adv1MAC[A,I] =  Pr[Chal. outputs 1] is “negligible.”

Chal. Adv.

kK

(m,t)

m1 M

t1  S(k,m1)

b=1    if  V(k,m,t) = `yes’ and  (m,t)  ≠  (m1,t1)

b=0   otherwise

b



One-time MAC:  an example
Can be secure against all adversaries and faster than PRF-based MACs

Let  q  be a large prime (e.g.  q = 2128+51 )

key = (a, b) ∈ {1,…,q}2          (two random ints. in [1,q] )

msg = ( m[1], …, m[L] )    where each block is 128 bit int.

S( key, msg )  =  Pmsg(a) + b     (mod q)

where   Pmsg(x) = xL+1 + m[L]xL + … + m[1]x    is a poly. of deg L+1

We show:    given  S( key, msg1 )  adv. has no info about  S( key, msg2 ) 



One-time MAC ⇒ Many-time MAC

Let  (S,V)  be a secure one-time MAC over (KI,M, {0,1}n ) .

Let  F: KF × {0,1}n ⟶ {0,1}n be a secure PRF.

Carter-Wegman MAC:    CW( (k1,k2), m) =  (r,  F(k1,r) ⨁ S(k2,m) )
For random r ⟵ {0,1}n . If you compute tag for same msg twice, each time 
you choose different r and get different tags (for the same msg).  

Thm:   If  (S,V) is a secure one-time MAC and F a secure PRF
then  CW  is a (many-time) secure MAC outputting tags in  {0,1}2n .

fast 
long input

slow but 
short input

Note: PRF is only used for short messages and yet we get a MAC for long messages



How would you verify a CW tag  (r, t)  on message m ?

Recall that V(k2,m,.) is the verification alg. for the one time MAC. 

CW( (k1,k2), m) =  (r,  F(k1,r) ⨁ S(k2,m) )

✓ Run   V( k2,  m,  F(k1, r) ⨁ t) )

Run   V( k2,  m,  F(k1, t) ⨁r) )

Run   V( k2,  m, r )

Run   V( k2,  m, t )

t

S(k2,m)



Construction 4:   HMAC   (Hash-MAC)

Most widely used MAC on the Internet.

…  but,  we first we need to discuss hash function.


