Message integrity

Message Auth. Codes




Message Integrity

Goal: integrity, no confidentiality.

Examples:
— Protecting public binaries on disk.

— Protecting banner ads on web pages.



Message integrity: MACs

k- [ essage ] [ ﬁ

Generate tag: Verify tag: .
tag < S(k, m) V(k, m, tag) ="yes’

Def: MAC | =(S,V) defined over (K,M,T) is a pair of algs:

— S(k,m) outputs tinT vk € K,Ym € M

— V(k,m,t) outputs ‘'yes’ or ‘'no’  v(k,m,S(k m)) = "yes"



Integrity requires a secret key

tag

m’| | CRC(m’)

Generate tag:
tag < CRC(m)

[
»

Verify tag: ;
V(m, tag) = yes’

» Attacker can easily modify message m and re-compute CRC.

CRC designed to detect random, not malicious errors.




Secure MACs

Attacker’s power: chosen message attack

. for m;,m,,...,m, attackeris given t. < S(k,m)

q

Attacker’s goal: existential forgery
. produce some new valid message/tag pair (m,t).

(mt) & {(myty), ..., (myt,) }

= attacker cannot produce a valid tag for a new message

= given (m,t) attacker cannot even produce (m,t’) for t' #t



Secure MACs

e Fora MAC I=(S,V) and adv. A define a MAC game as:

m;, € M m, ,.. M

t, < S(kmy) t ..t

(m,t)

:
b=1 if V(k,m,t)="yes" and (mit) ¢ {(myt), ..., (myt;)}

b=0 otherwise

Def: 1=(S,V) is a secure MAC if for all “efficient” A:

Adv,,,.[A1] = Pr[Chal. outputs 1] is “negligible.”



Let 1=(S,V) be a MAC.
Suppose an attacker is able to find m, # m, such that

S(k, my) =S(k, m;) for % of the keys k in K
Can this MAC be secure?

Yes, the attacker cannot generate a valid tag for my or m,

==) No, this MAC can be broken using a chosen msg attack
It depends on the details of the MAC

(m,, t) >output (m,, t) valid existing Forgery
Adv[A, 1] = 1/2



Let 1=(S,V) be a MAC.

Suppose S(k,m) is always 5 bits long T={0.1)5

tag len = 64, 96, 128 bits
Can this MAC be secure? /

TLS

— No, an attacker can simply guess the tag for messages

It depends on the details of the MAC

Yes, the attacker cannot generate a valid tag for any message

Output: choserand. T €< {0,1}°
output (0,t) Adv|[A, 1] =1/32



Example: protecting system files

Suppose at install time the system computes:
user’s password

Later a virus infects system and modifies system files

User reboots into clean OS and supplies his password
— Then: secure MAC = all modified files will be detected



Message Integrity

MACs based on PRFs




Review: Secure MACs

MAC: signing alg. S(k,m)—t and verification alg. V(k,m,t) —0,1

Attacker’s power: chosen message attack

. for m;,m,,..,m_ attackeris given t <« S(k,m)

q

Attacker’s goal: existential forgery
. produce some new valid message/tag pair (m,t).

(mt) & {(myty), ..., (myt,) }

= attacker cannot produce a valid tag for a new message



Secure PRF = Secure MAC

ForaPRF F:KxX —Y defineaMAC I.=(SV) as:
— S(k,m) := F(k,m)

— V(k,m,t): output 'yes if t=F(k,m)and 'no’ otherwise.

[ messagem | tag

Bob

tag < F(k,m) accept msg if
tag = F(k,m)



A bad example

Suppose F: KxX —Y isasecure PRF with Y ={0,1}°

Is the derived MAC [. a secure MAC system?

Yes, the MAC is secure because the PRF is secure
=) No tags are too short: anyone can guess the tag for any msg

It depends on the function F

Adv[A, I] =1/2'0=1/1024 -> non-negligible



Security

Thm: If F: KxXX—Y is a secure PRF and 1/|Y]| is negligible

(i.e. |Y|islarge) then I. is asecure MAC.

In particular, for every eff. MAC adversary A attacking I.

there exists an eff. PRF adversary B attacking F s.t.:

Advy . [A, 1] < Advpee[B, F] + 1/]Y]|

— | issecure aslongas |Y| islarge, say |Y|=2%0.



Proof Sketch

Suppose f: X —Y isatruly random function

Then MAC adversary A must win the following game:

m, € X m, ,.. m,

tl <— f(ml) f(mz) DY f(mq)=

f in
Funs[X,Y] ) (m,t)

= f(m) is independent of f(m,), ..., f(m,)
Awinsif t=f(m) and m ¢ {m,,..,m,}

The best the adversary can do is only guessing

=  Pr[Awins]=1/]|Y] same must hold for the secure PRF: F(k,x)



Examples

AES (is a secure PRF): A MAC for 16-byte/128-bit messages.

Main question: How to convert Small-MAC into a Big-MAC ?

Two main constructions used in practice:
— CBC-MAC (banking — ANSI X9.9, X9.19, FIPS 186-3)
— HMAC (Internet protocols: SSL, IPsec, SSH, ...)

Both convert a small-PRF into a big-PRF.



Truncating MACs based on PRFs

Easy lemma: suppose F:KxX — {0,1}" is a secure PRF.

Thensois F/(k,m)=F(k,m)[1l..t] forall 1<t<n

first t—bit
of output

= if (S,V) is a MAC is based on a secure PRF outputting n-bit tags
the truncated MAC outputting w bits is secure

.. aslongas 1/2% is still negligible (say w>64)



Message Integrity

CBC-MAC and NMAC




MACs and PRFs

Recall: secure PRF F = secure MAC, aslongas |Y]| islarge
S(k, m) = F(k, m)

Our goal:
given a PRF for short messages (AES)
construct a PRF for long messages

From hereonlet X={0,1}" (e.g. n=128, in case of AES)



Construction 1: encrypted CBC-MAC (ecao

raw CBC

m[0]

Let F: KxX—X beaPRP

Define new PRF F.ggc: K? x XSt — X

tag




Construction 2: NMAC (rested Mac)

cascade

m|[0] m[1] m[3] m[4]

I

let F: KxX— K beaPRF

Define new PRF  Fyyac: K2 x XSt— K tag| €K




Why the last encryption step in ECBC-MAC and NMAC?

NMAC: suppose we definea MAC 1= (S,V) where

S(k,m) = cascade(k, m)

This MAC is secure

This MAC can be forged without any chosen msg queries
=)  This MAC can be forged with one chosen msg query

This MAC can be forged, but only with two msg queries

cascade (k, m) ==> cascade(k, m| |w) for any w Extension attack



Why the last encryption step in ECBC-MAC?

Suppose we define a MAC Iz, = (S,V)  where
S(k,m) = rawCBC(k,m)

Then I;,, is easily broken using a 1-chosen msg attack.

Adversary works as follows:
— Choose an arbitrary one-block message meX
— Request tag form. Get t=F(k,m)
— Output t as MAC forgery for the 2-block message m’=(m, t®m)

Indeed: rawCBC(k, (m, t®m) ) = F(k, F(k,m)®(t®m) ) = F(k, tB(t®m) ) =t



The security bounds are tight: an attack

After signing | X|¥2 messages with ECBC-MAC or
|K|Y2 messages with NMAC
the MACs become insecure

Suppose the underlying PRF F isa PRP (e.g. AES)

 Then both PRFs (EcBc and NMAC) have the following
extension property:

VX,y,w: Fgelk, X) = Fgelk, y) = Fgelk, Xllw) =Fg.(k, yllw)



The security bounds are tight: an attack
Let Fy: KxX—Y be a PRF that has the extension property

I:BIG(k' X) = I:BIG(kf y) = FB|G(k; X"W) = FB|G(k; V"W)

Generic attack on the derived MAC:

step 1: issue |Y|Y2 message queries for rand. messages in X.

obtain (m,t) fori=1,..,|Y|Y?
step 2: find a collision t,=t, foru#zv (one exists w.h.p by b-day paradox)
step 3: choose some w and query for t:=Fg¢(k, m,llw)

step 4: output forgery (mllw, t). Indeed t:=Fg(k, mllw)




Comparison

ECBC-MAC is commonly used as an AES-based MAC
e CCM encryption mode (used in 802.11i)
* NIST standard called CMAC

NMAC not usually used with AES or 3DES

* Main reason: need to change AES key on every block
requires re-computing AES key expansion

 But NMAC is the basis for a popular MAC called HMAC (next)



Message Integrity

MAC padding




Recall: ECBC-MAC

m[0]

Let F: KxX—X beaPRP

Define new PRF F.ggc: K? x XSt — X

tag




What if msg. len. is not multiple of block-size?

tag |




CBC MAC padding

Bad idea: pad m with 0’ s

m[0] M[1] | — m[0] m[1] | 0000]

Is the resulting MAC secure?

Yes, the MAC is secure
It depends on the underlying MAC
— No, given tag on msg m attacker obtains tag on mll0

Problem: pad(m) = pad(mllO0)



CBC MAC padding

For security, padding must be invertible !

myzm, = pad(m,) % pad(m,)

1SO: pad with “1000...00”. Add new dummy block if needed.
— The “1” indicates beginning of pad.

mio] [mi11f00]

m’[0] m’[1] |1000...000

m[0] m[1]

—
m’[0] m’[1] —




CMAC (NIST standard)
(K,, k,) derived

Variant of CBC-MAC where  key = (k, ky, k) from K
* No final encryption step (extension attack thwarted by last keyed xor)
* No dummy block (ambiguity resolved by use of k; or k,)

m[O0] m[1] |+++m[w][100] m[0] m[1] J-+s[ mlw]

|t | | e e
- -




Message Integrity

PMAC and
Carter-Wegman MAC




e ECBC and NMAC are sequential.

e Can we build a parallel MAC from a small PRF ??



Construction 3: PMAC — parallel MAC

P(k, i): an easy to compute function

m[0]

m[1]

m[2]

m[3]

key = (k/ kl)
P(k,0) P(k,1) — P(k,2) P(k,3)
Padding similar
to CMAC
@4//

Let F:KxX—X beaPRF

Define new PRF F, ¢ : K% x XSt — X

v




PMAC is incremental

Suppose F is a PRP. o0 G o]
P(k,0)> P(k,1) > P(k, 2)—> P(k,3)>
When misl —scriy ﬁg
can we quickly update tag?

no, it can’t be done
do F(k,tag) ® F(k,, m’'[1] ® P(k,1))
( do Fi(k,tag) ® F(k, m[1] ® P(k,1)) & F(k,, m’[1] & P(k,1))

do tag @ F(k,, m[1]1 ® P(k,1)) @ F(k,, m’'[1] ® P(k,1))
Then apply F(k,, *)



One time MAC (analog of one time pad)

e Fora MAC I=(S,V) and adv. A define a MAC game as:

m;, € M

t, <« S(k,m,)

v

(m,t)

¥
b=1 if V(km,t)="yes’ and (m,t) # (m,t,)

b=0 otherwise

Def: 1=(S,V) is a secure MAC if for all “efficient” A:
Adv,ac[Al] = Pr[Chal. outputs 1] is “negligible.”




One-time MAC: an example

Can be secure against all adversaries and faster than PRF-based MACs

Let g be alarge prime (e.g. q=2128+51)
key = (a, b) €{1,...,9} (two random ints. in [1,q] )
msg = ( m[1], ..., m[L] ) where each block is 128 bit int.

S(key,msg) = P_._(a)+b (modq)

msg

where P . (x)=x"1+m[L]-x"+ ..+ m[1]-x isa poly. of deg L+1

We show: given S( key, msg, ) adv. has no info about S( key, msg, )



One-time MAC = Many-time MAC

Let (S,V) be a secure one-time MAC over (K,,M, {0,1}") .
Let F: K¢ x{0,1}" — {0,1}" be a secure PRF.

slow but fast

shorE input long input

Carter-Wegman MAC: CW( (k,k,), m) = (r, F(k,r) ® S(k,,m) )

For random r «<— {0,1}" . If you compute tag for same msg twice, each time
you choose different r and get different tags (for the same msg).

Thm: If (S,V) is a secure one-time MAC and F a secure PRF
then CW is a (many-time) secure MAC outputting tags in {0,1}*".

Note: PRF is only used for short messages and yet we get a MAC for long messages



CW( (ky,k,), m) = (r, F(ky,r) @ S(k,,m))
~

f
How would you verify a CW tag (r, t) on messagem ?

Recall that V(k,,m,.) is the verification alg. for the one time MAC.

Run V(k, m, F(k, t) ®r))
Run V(k,, m,r)
Run V(k, m,t)
v  Run V(k,, m, F(k, r)®t))
.

S(k,,m)



Construction 4: HMAC (Hash-MAC)

Most widely used MAC on the Internet.

... but, we first we need to discuss hash function.



